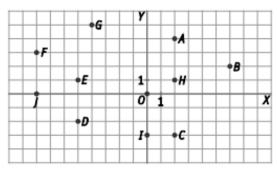


scmi@planalfa.es

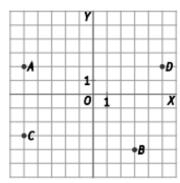


MAT_2

TEMA 8: FUNCIONES

1. COORDENADAS

1.1 Escribe las coordenadas de los puntos representados.



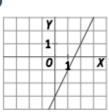
- A(2, 4)
- C(2,-3)
- E(-5, 1)
- G(-4, 5)
- I(0,-3)
- O(0, 0)

- B(6, 2)
- D(-5,-2)
- F(-8, 3)
- H(2, 1)
- J(-8, 0)

1.2 Representa en el plano cartesiano los siguientes puntos e indica en qué cuadrante están

- a) A(-5, 2)
- b) B(3, -4)
- c) C(-5,-3)
- d) D(5, 2)

- a) 2.º cuadrante
- b) 4.º cuadrante
- c) 3.er cuadrante
- d) 1.er cuadrante


2. FÓRMULA – TABLA – GRÁFICA

- 2.1 Dos magnitudes están relacionadas mediante la **fórmula** y = 2x 3.
 - a) Construye la tabla de valores correspondiente.
 - b) Representa la gráfica

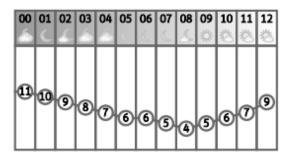
a)

x	-2	-1	0	1	2	3
у	-7	- 5	-3	-1	1	3

b)

y = m x + n

Esta fórmula corresponde a una función lineal y si la representamos será una recta



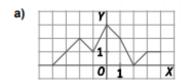
2.2 Xiomara está consultando las temperaturas previstas en su ciudad en la web de la Agencia Estatal de Meteorología (gráfica AEMET).

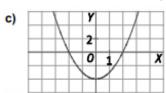
scmi@planalfa.es

- a) Construye una tabla de valores con los datos de la imagen.
- b) ¿Cuál es la variable independiente? ¿Cuál es la variable dependiente?
- c) ¿Qué temperatura había a las seis de la mañana?
- d) ¿A qué hora la temperatura bajó de 10 ºC?

a)	Hora	00	01	02	03	04	05	06	07	80	09	10	11	12
	Temperatura (°C)	11	10	9	8	7	6	6	5	4	5	6	7	9

- b) La variable independiente es la hora, y la variable dependiente es la temperatura.
- c) A las seis de la mañana había 6 °C.
- d) A partir de las dos de la mañana.
- 2.3 En la siguiente gráfica se recogen los datos de la estatura de Sergio entre los 6 y los 14 años. Contesta:
 - a) ¿Cuánto medía cuando tenía 6 años?
 - ¿Y cuando tenía 10 años?
 - b) ¿A qué edad superó los 1,5 m de altura?
 - c) ¿En algún momento su estatura permanece constante?
 - d) Construye la tabla de valores asociada.

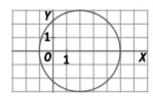



- a) A los 6 años medía 110 cm, y a los 10, 145 cm.
- b) Superó los 1,5 m a los 12 años.
- c) No, siempre crece.

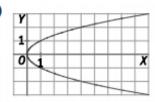
d)	Edad (años)	6	7	8	9	10	11	12	13	14
	Altura (cm)	110	115	120	130	145	148	150	160	175

3. DOMINIO – RECORRIDO

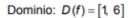
3.1 Indica si las siguientes gráficas representan una función. En caso afirmativo, indica su dominio y recorrido.

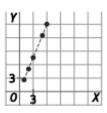


Plaça Ermita,1 46220 - Picassent (València) Tel. 96 122 12 00


Cód. 46006616 www.santcristoformartir.com scmi@planalfa.es

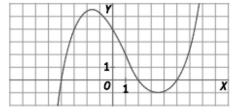
b)

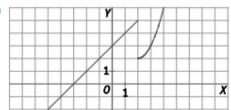

d)


- a) Sí es una función. Su dominio es D(f) = [-4, 4] y su recorrido es R(f) = [0, 3].
- b) No es una función, ya que, por ejemplo, a x = 2 le corresponden dos valores, y = 3 e y = -3.
- c) Sí es una función. Su dominio es D(f) = [-3, 3] y su recorrido es R(f) = [-4, 4].
- d) No es una función, ya que, por ejemplo, a x = 1 le corresponden dos valores, y = 1 e y = -1.
- 3.2 Un comerciante tiene una tabla que le ayuda a calcular el precio de los kilogramos de manzanas que vende.

Manzanas (kg)	1	2	3	5	6
Precio (€)	2,5	5	7,5	12,5	15

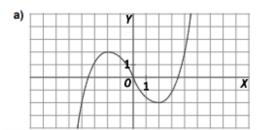
- a) ¿La relación entre la cantidad de fruta vendida y el beneficio obtenido es una función?
- b) Representa gráficamente los datos de la tabla e indica su dominio y recorrido si el máximo valor que toma la variable independiente es 6.
 - a) Sí es una función, ya que a cada valor de x le corresponde un único valor de y.
 - b) Si suponemos que se pueden vender cantidades fraccionarias (como 2,5 kg), es posible unir los puntos.

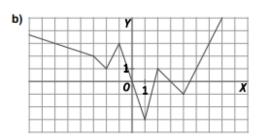

Recorrido:
$$R(f) = [2, 5, 15]$$


4. CONTINUIDAD O DISCONTINUIDAD, CRECIMIENTO O DECRECIMIENTO, PUNTOS DE CORTE, **MÁXIMOS Y MÍNIMOS**

4.1 Indica si las funciones son continuas o discontinuas, y, en su caso, los puntos de discontinuidad. Halla los puntos de corte con los ejes de cada función.

b)


- a) Es continua. Puntos de corte con el eje X: (-4, 0), (2, 0) y (5, 0). Punto de corte con el eje Y: (0, 4).
- b) Es discontinua en x=2. Punto de corte con el eje X: (-3, 0). Punto de corte con el eje Y: (0, 3).



scmi@planalfa.es

4.2 Indica los intervalos de crecimiento y decrecimiento de cada una de las siguientes funciones y encuentra los máximos y mínimos.

- a) Creciente: de x = -4 a x = -2 y de x = 2 a x = 4. Decreciente: de x = -2 a x = 2. Máximo relativo: (-2, 2). Mínimo relativo: (2, -2).
- **b)** Decreciente: de x=-7 a x=-2, de x=-1 a x=1 y de x=2 a x=4. Creciente: de x=-2 a x=-1, de x=1 a x=2 y de x=4 a x=7.

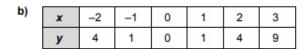
Máximos relativos: (-1, 3) y (2, 1). Mínimo absoluto: (1, -3). Mínimos relativos: (-2, 1) y (4, -1).

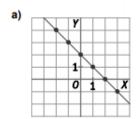
5. FUNCIÓN LINEAL (y = m x + n) - FUNCIÓN LINEAL DE PROPORCIONALIDAD DIRECTA <math>(y = m x)

Llamaremos **función lineal** a aquellas que sea de la forma y = mx + n, donde m y n son dos números.

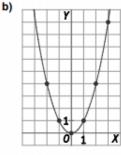
- El número *m* es la **pendiente**.
- El número *n* es la **ordenada en el origen**.

Propiedades:


- 1. Cortan al eje de ordenadas o eje Y en el punto (0, n).
- 2. Su representación gráfica es una recta. Cuanto mayor sea el valor de m, mayor será la inclinación de la recta.
- 3. Si m > 0, entonces la función es creciente.
- 4. Si m < 0, entonces la función es decreciente.


Llamaremos **función lineal** de **PROPORCIONALIDAD DIRECTA** a aquellas que sea de la forma **y = mx**, donde *m* es un número.

• El número *m* es la **pendiente**.


5.1 Representa las funciones a partir de las tablas y comprueba si se trata de una función lineal.

a)	X	-2	-1	0	1	2	3
	У	4	3	2	1	0	-1

Es una línea recta, sí es una función lineal.

No es una función lineal, no es una línea recta.

Plaça Ermita,1 46220 - Picassent (València) Tel. 96 122 12 00

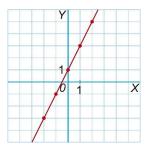
Cód. 46006616 www.santcristoformartir.com scmi@planalfa.es

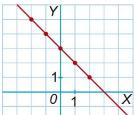
5.2 Representa gráficamente estas funciones afines y comprueba si se trata de una función lineal.

a) y = 2x + 1

х	-2	-1	0	1	2
y	-3	-1	1	3	5

Pendiente: m = 2


Ordenada en el origen: n = 1



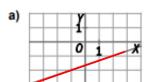
X	-2	-1	0	1	2
у	5	4	3	2	1

Pendiente: m = -1

Ordenada en el origen: n = 3

5.3 Sin representarlas, indica si las siguientes funciones son crecientes, decrecientes o constantes

- a) f(x) = 10x 43
- c) f(x) = -43
- e) f(x) = 0


b) f(x) = x + 13

- d) f(x) = -8x + 15
- f) f(x) = 15 8x

- a) $m=10>0 \Rightarrow$ creciente
- c) $m = 0 \Rightarrow$ constante
- e) $m = 0 \Rightarrow$ constante

- **b)** $m=1>0 \Rightarrow$ creciente
- d) $m = -8 < 0 \Rightarrow$ decreciente
- f) $m = -8 < 0 \Rightarrow$ decreciente

5.4 Indica el signo de la pendiente y de la ordenada en el origen en cada gráfica.

a) m > 0, n < 0

- b) Y Y Y
- **b)** m = 0, n < 0

5.5 Calcula en cada caso la pendiente de la recta que pasa por los puntos indicados.

a) A(5, 1) y B(7, -7)

c) A(1, 1) y B(-3,9)

b) A(-1,3) y B(4, 23)

d) A(0,4) y B(4,-32)

a) $m = \frac{-7-1}{7-5} = \frac{-8}{2} = -4$

c) $m = \frac{9-1}{-3-1} = \frac{8}{-4} = -2$

b) $m = \frac{23-3}{4-(-1)} = \frac{20}{5} = 4$

d) $m = \frac{-32-4}{4-0} = \frac{-36}{4} = -9$

5.6 Estudia si los puntos A (2, 7) y B (11, -10) pertenecen a la recta y = 4×-1 .

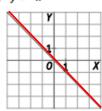
Un punto pertenece a una recta si verifica su ecuación:

$$4 \cdot 2 - 1 = 8 - 1 = 7 \Rightarrow A(2, 7)$$
 pertenece a la recta.

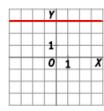
$$4 \cdot 11 - 1 = 43 \neq -10 \Rightarrow B(11, -10)$$
 no pertenece a la recta.

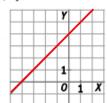
SANT VICENT MARTIR

5.7 Dibuja una recta en cada caso que cumpla las condiciones pedidas.


a) Recta creciente, ordenada en el origen positiva.

scmi@planalfa.es


- b) Función de proporcionalidad directa, decreciente.
- c) Función constante que pasa por A(0, 3).
- d) Función lineal creciente que pasa por A(0, 4).



c)
$$y = 3$$

d)
$$y = x + 4$$

d)
$$y = m x + n$$

 $m > 0, n = 4$

5.8 Calcula la ecuación de cada recta a partir de los siguientes datos.

- a) Pasa por A (1, 4) y B (5, -4).
- b) Su pendiente es 6 y pasa por (2, -5).
- c) Pasa por (-1, -4) y su ordenada en el origen es 2/3.

a)
$$m = \frac{-4-4}{5-1} = -2 \Rightarrow y = -2x + n$$
. Como pasa por $(1, 4)$, sustituimos este punto en la ecuación: $4 = -2 + n \Rightarrow n = 6$. La recta es $y = -2x + 6$.

- b) y = 6x + n. Como pasa por (2, -5), sustituimos este punto en la ecuación: $-5 = 6 \cdot 2 + n \Rightarrow n = -17$. La recta es v = 6x - 17.
- c) $y = mx + \frac{2}{3}$. Como pasa por (-1, -4), sustituimos este punto en la ecuación: $-4 = m(-1) + \frac{2}{3} \Rightarrow m = 4 + \frac{2}{3} = \frac{14}{3} - 5 = 6 \cdot 2 + n \Rightarrow n = -17$. La recta es $y = \frac{14}{3}x + \frac{2}{3}$.

5.9 Estudia la posición relativa de las siguientes rectas.

a)
$$\begin{cases} r : y = 3x - 2 \\ s : y = -3x - 2 \end{cases}$$

b)
$$\begin{cases} r: y = \frac{6}{9}x + 6\\ s: y = \frac{26}{39}x + \frac{3}{5} \end{cases}$$

c)
$$\begin{cases} r: y = 7x - 2 \\ s: y = 7x + 8 \end{cases}$$

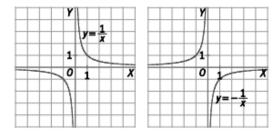
a)
$$\begin{cases} r: y = 3x - 2 \\ s: y = -3x - 2 \end{cases}$$
 b)
$$\begin{cases} r: y = \frac{6}{9}x + 6 \\ s: y = \frac{26}{39}x + \frac{3}{5} \end{cases}$$
 c)
$$\begin{cases} r: y = 7x - 2 \\ s: y = 7x + 8 \end{cases}$$
 d)
$$\begin{cases} r: y = \frac{10}{15}x + 6 \\ s: y = \frac{-24}{36}x + \frac{30}{5} \end{cases}$$

- b) Son paralelas, ya que tienen la misma pendiente, $\frac{6}{9} = \frac{26}{39} = \frac{2}{3}$
- c) Son paralelas, ya que la pendiente de ambas es 7.
- d) Son secantes, pues sus pendientes son distintas, $\frac{10}{15} \neq \frac{-24}{36}$.

6. OTRAS FUNCIONES

La **Función de proporcionalidad inversa** corresponde a la siguiente fórmula: **y = k / x** Se denominana hipérbolas.

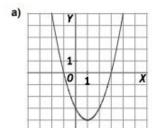
- **k** = constante
- x ≠ 0

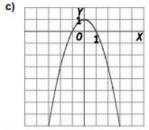

La función cuadrática corresponde a la siguiente fórmula: $y = ax^2 + bx + c$

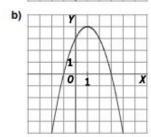
- a, b, c = números cualesquiera
- a ≠ 0

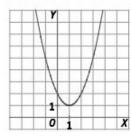
6.1 Elabora una tabla de valores para la función y = 1/x, y otra para la función y = -1/x, dando a la variable independiente valores positivos y negativos, y observa sus gráficas. ¿Qué relación observas entre las dos funciones?

x	-5	-4	-3	-2	-1	1	2	3	4	5
$y = \frac{1}{x}$	<u>-1</u> 5	<u>-1</u>	<u>-1</u> 3	$\frac{-1}{2}$	-1	1	1/2	1/3	1/4	1 5


x	-5	-4	-3	-2	-1	1	2	3	4	5
$y = \frac{-1}{x}$	<u>1</u> 5	1/4	1/3	1/2	1	1	-1 2	-1 3	-1 4	<u>-1</u> 5




Para el mismo valor de x toman valores de y opuestos.


6.2 Escribe las coordenadas del vértice y de los puntos de corte con los ejes de cada parábola.

d)

- a) Vértice: (1-4). Puntos de corte con el eje X: (-1,0) y (3,0). Punto de corte con el eje Y: (0, -3)
- b) Vértice: (1, 4). Puntos de corte con el eje X: (-1,0) y (3,0). Punto de corte con el eje Y: (0, 3)
- c) Vértice: (0, 1). Puntos de corte con el eje X: (-1,0) y (1,0). Punto de corte con el eje Y: (0, 1)
- d) Vértice: (1, 1). No hay puntos de corte con el eje X. Punto de corte con el eje Y: (0, 2)

scmi@planalfa.es

6.3 Indica hacia dónde se abren las ramas de las siguientes parábolas, sin representarlas.

a)
$$y = 3x^2 - 5x$$

b)
$$y = -2x^2 + 7x + 1$$

c)
$$y = 3x - 5x^2 + 2$$

d)
$$y = 6 - x - x^2$$

6.4 Halla los puntos de corte con los ejes de las siguientes parábolas

a)
$$y = x^2 - 5x + 4$$

b)
$$v = x^2 - 4x + 4$$

c)
$$y = x^2 + 4$$

d)
$$y = -2x^2 + 5x - 3$$

a) Puntos de corte con el eje X:
$$x^2 - 5x + 4 = 0 \Rightarrow x = \frac{5 \pm \sqrt{5^2 - 4 \cdot 1 \cdot 4}}{2 \cdot 1} = \frac{5 \pm 3}{2} \Rightarrow \begin{cases} x = 1 \\ x = 4 \end{cases} \Rightarrow (1, 0)y(4, 0)$$

Punto de corte con el eje Y: $y = 4 \Rightarrow (0, 4)$

b) Puntos de corte con el eje X: $x^2 - 4x + 4 = 0 \Rightarrow (x-2)^2 = 0 \Rightarrow x = 2 \Rightarrow (2,0)$

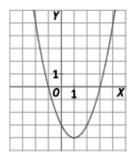
Punto de corte con el eje Y: $y = 4 \Rightarrow (0, 4)$

c) Puntos de corte con el eje X: $x^2 + 4 = 0 \Rightarrow x = \sqrt{-4} \Rightarrow$ No tiene solución; por tanto, no corta el eje Y.

Punto de corte con el eje Y: $y = 4 \Rightarrow (0, 4)$

d) Puntos de corte con el eje X:
$$-2x^2 + 5x - 3 = 0 \Rightarrow x = \frac{-5 \pm \sqrt{5^2 - 4 \cdot (-2) \cdot (-3)}}{2 \cdot (-2)} = \frac{-5 \pm 1}{-4} \Rightarrow \begin{cases} x = \frac{3}{2} \Rightarrow \left(\frac{3}{2}, 0\right) y(1, 0) \end{cases}$$

Punto de corte con el eje Y: $y = -3 \Rightarrow (0, -3)$


6.5 Haz una tabla de valores de la función y = x² - 2x - 3, desde x = 4 hasta x = -4.
A la vista de la tabla, ¿puedes indicar los puntos de corte y el vértice de la parábola?
Dibuja su gráfica de forma aproximada.

x	-4	-3	-2	-1	0	1	2	3	4
У	21	12	5	0	-3	-4	-3	0	5

El vértice es el punto donde los valores de y pasan de decrecer a crecer: (1 - 4).

Punto de corte con el eje Y: $x=0 \Rightarrow (0, -3)$

Puntos de corte con el eje X: $y=0 \Rightarrow (-1,0)$ y (3,0)

