

MAT_2 Tema 5: EXPRESIONES ALGEBRAICAS

1. HALLAR LA EXPRESIÓN ALGEBRAICA

1.1 Escribe la expresión algebraica correspondiente a estas frases:

La suma de dos números seguidos: n + (n + 1) El cuadrado de un número: n^2 La raíz cuadrada del doble de un número: 2n El triple de un número menos cinco: 3n - 5 El doble de la raíz cuadrada de un número: $2\sqrt{n}$

1.2 Escribe la expresión algebraica correspondiente:

Los minerales que tiene Pilar, que son la mitad de minerales que tiene Lucía, que tiene x: La cantidad de carne que compró Blanca, que es un cuarto de kilo más que la comprada por Pedro: Alejandro tiene 20% de sus ahorros en una cuenta a plazo fijo: x/2 x + (1/4) $20 \cdot x = x$ 100

2. MONOMIOS (COEFICIENTE, PARTE LITERAL Y GRADO)

2.1 ¿Cuáles de las siguientes expresiones algebraicas son monomios? Indica su coeficiente, parte literal y grado.

	Expresión	¿Monomio?	Coeficiente	Parte literal	Grado
a)	- 7x⁴y	Sí	-7	x⁴y	4 + 1 = 5
b)	6√x³	No	-	-	-
c)	9	Sí	9	No tiene	0
d)	3x-2	No	-	-	-
e)	$(5-3)x^3y^4 = 2x^3y^4$	Sí	2	x³y⁴	3 + 4 = 7
f)	$\frac{3x^2z^6}{y^3}$	No	-	-	-

2.3 Indica el coeficiente, la parte literal y el grado de los siguientes monomios.

	Monomio	Coeficiente	Parte literal	Grado
a)	$\frac{2}{3}x^8y^4$	2/3	x ⁸ y⁴	12
b)	√3	√3	No tiene	0
c)	9 <i>x</i> ³ <i>y</i>	9	x³y	4
d)	35x5y5z5	3⁵	x ⁵ y ⁵ z ⁵	15
e)	-4x³y°z	-4	x³z	4
f)	16x ² 5	16 5	x ²	2

2.2 Indica qué expresiones algebraicas son monomios:

e)
$$\frac{2x^2}{v}$$

d)
$$\sqrt{3}x^7y$$

f)
$$\frac{3x \cdot 5}{2}$$

f) Sí es monomio.

3. OPERACIONES CON MONOMIOS

3.1 Realiza las siguientes sumas y restas de monomios.

a)
$$5a^3x^4 + 7x^4a^3 - 30x^4a^3 + 19a^3x^4$$

a)
$$5a^3x^4 + 7x^4a^3 - 30x^4a^3 + 19a^3x^4 = x^4a^3$$

b)
$$\frac{7}{3}x^4 - \frac{4}{3}x^4 + \frac{11}{3}x^4$$

b)
$$\frac{7}{3}x^4 - \frac{4}{3}x^4 + \frac{11}{3}x^4 = \frac{14}{3}x^4$$

c)
$$\frac{13}{24}t^5 - \frac{5}{18}t^6 + \frac{7}{45}t^6$$

c)
$$\frac{13}{24}t^5 - \frac{5}{18}t^6 + \frac{7}{45}t^6 = \frac{13}{24}t^5 - \frac{11}{90}t^6$$

3.2 Realiza las siguientes multiplicaciones (producto de un número por un monomios y producto de monomios).

c)
$$(-6x^3) \cdot (2x)$$

d)
$$\left(\frac{3}{4}x\right)\cdot\left(\frac{y}{3}\right)$$

f)
$$\left(\frac{4}{5}x^8y^7\right)\cdot\left(\frac{15}{14}x^6y^9\right)$$

d)
$$\frac{1}{4}xy$$

f)
$$\frac{6}{7}x^{14}y^{16}$$

3.3 Calcula las siguientes potencias.

a)
$$(-4x^4)^2$$

c)
$$(3^5 x^9)^{10}$$

b)
$$(-2x^{10})^3$$

d)
$$(-2a^3b^2)^2$$

f)
$$(-a^9b^3c^6)$$

e)
$$x^{30}v^{50}z^{1}$$

3.4 Resuelve los siguientes cocientes entre monomios y simplifica.

a)
$$\frac{81x^{6}}{9x^{5}}$$

c)
$$\frac{48x^7yz^3}{16x^7z^3}$$

e)
$$\frac{8x^{40}}{4x^{20}}$$

b)
$$\frac{-48x^9}{6x^9}$$

d)
$$\frac{5x^9y^4z^5}{20x^4y^4z^4}$$

$$f) \quad \frac{36x^{120}y^{110}z^{10}}{48x^{10}v^{10}z}$$

d)
$$\frac{x^5z}{4}$$

f)
$$\frac{3}{4}x^{110}y^{100}z^{99}$$

4. POLINOMIOS

4.1 Indica el término principal, el coeficiente principal, el grado y término independiente de los polinomios:

	Polinomio	Término principal	Coeficiente principal	Grado	Término independiente
a)	$5x^4 - 6x^2 + 1$	5x ⁴	5	4	1
b)	$-3x + 4x^2 - 8 + x^3$	x ³	1	3	-8
c)	$6x^2 - 8x$	6x2	6	2	0
d)	$-\frac{2}{3}x^2 + x - \frac{4}{9}$	$\frac{-2}{3}x^2$	-2 3	2	-4 9

5. OPERACIONES CON POLINOMIOS

5.1 Calcula el valor numérico de los siguientes polinomios:

a)
$$P(x) = 3x^2 - 5x + 7$$
 para $x = 2$

b)
$$Q(x) = -5x^3 + 4x + 9 \text{ para } x = -1$$

c)
$$R(x,y) = 3x^2y - 5xy$$
 para $x = 2, y = -1$

d)
$$S(x, y, z) = 3x^2 - 2y^2 + 4z^2$$
 para $x = 2, y = 0, z = -2$

a)
$$P(2) = 3 \cdot 2^2 - 5 \cdot 2 + 7 = 9$$

b)
$$Q(-1) = -5(-1)^3 + 4(-1) + 9 = 10$$

c)
$$R(2,-1) = 3 \cdot 2^2 \cdot (-1) - 5 \cdot 2 \cdot (-1) = -2$$

d)
$$S(2,0,-2) = 3 \cdot 2^2 - 2 \cdot 0^2 + 4 \cdot (-2)^2 = 28$$

5.2 Conociendo los polinomios $P(x) = -5x^3 + 6x^2 + x - 8$, $Q(x) = 2x^3 + 4x^2 + 10x - 3$ y $R(x) = 3x^2 - 9x - 1$ realiza las siguientes sumas y restas.

a)
$$P(x) + Q(x)$$

c)
$$Q(x) - P(x)$$

e)
$$P(x) - [Q(x) + R(x)]$$

b)
$$P(x) - Q(x)$$

d)
$$P(x) - Q(x) + R(x)$$

f)
$$R(x) - [P(x) - Q(x)]$$

a)
$$P(x) + Q(x) = (-5x^3 + 6x^2 + x - 8) + (2x^3 + 4x^2 + 10x - 3) = -3x^3 + 10x^2 + 11x - 11$$

b)
$$P(x) - Q(x) = (-5x^3 + 6x^2 + x - 8) - (2x^3 + 4x^2 + 10x - 3) = -7x^3 + 2x^2 - 9x - 5$$

c)
$$Q(x) - P(x) = -[P(x) - Q(x)] = -(7x^3 + 2x^2 - 9x - 5) = 7x^3 - 2x^2 + 9x + 5$$

e)
$$P(x) - [Q(x) + R(x)] = [P(x) - Q(x)] - R(x) = (-7x^3 + 2x^2 - 9x - 5) - (3x^2 - 9x - 1) = -7x^3 - x^2 - 4x - 1$$

f)
$$R(x) - [P(x) - Q(x)] = (3x^2 - 9x - 1) - (-7x^3 + 2x^2 - 9x - 5) = 7x^3 + x^2 + 4$$

5.3 Realiza las siguientes multiplicaciones (producto de un número por un polinomio y producto de polinomios).

a)
$$7 \cdot (x^3 - 3x^2 + 5x + 1)$$

a)
$$7 \cdot (x^3 - 3x^2 + 5x + 1) = 7x^3 - 21x^2 + 35x + 7$$

b)
$$(-2) \cdot (-8x^5 - 9x^2 + 6x + 11)$$

b)
$$(-2) \cdot (-8x^5 - 9x^2 + 6x + 11) = 16x^5 + 18x^2 - 12x - 22$$

c)
$$(4x^2 + x - 3) \cdot (5x^2 - 7x + 2)$$

c)
$$(4x^2 + x - 3) \cdot (5x^2 - 7x + 2) = 20x^4 - 28x^3 + 8x^2 + 5x^3 - 7x^2 + 2x - 15x^2 + 21x - 6 = 20x^4 - 23x^3 - 14x^2 + 23x - 6$$

d)
$$(9x^2-6x-3)\cdot\left(x+\frac{2}{3}\right)$$

d)
$$(9x^2 - 6x - 3) \cdot \left(x + \frac{2}{3}\right)$$
 d) $(9x^2 - 6x - 3) \cdot \left(x + \frac{2}{3}\right) = 9x^3 + 6x^2 - 6x^2 - 4x - 3x - 2 = 9x^3 - 7x - 2$

e)
$$(7x^2 + 8x - 12) \cdot \left(\frac{1}{3}x + \frac{1}{6}\right)$$

e)
$$(7x^2 + 8x - 12) \cdot \left(\frac{1}{3}x + \frac{1}{6}\right)$$
 e) $(7x^2 + 8x - 12) \cdot \left(\frac{1}{3}x + \frac{1}{6}\right) = \frac{7}{3}x^3 + \frac{7}{6}x^2 + \frac{8}{3}x^2 + \frac{8}{6}x - 4x - 2 = \frac{7}{3}x^3 + \frac{23}{6}x^2 - \frac{8}{3}x - 2$

5.4 Resuelve los siguientes cocientes entre polinomios.

a)
$$(x^3 - 7x^2 + 4x): x = x^2 - 7x + 4$$

b)
$$(6x^8 + 12x^5)$$
: $(3x^3) = 2x^5 + 4x^2$

c)
$$(10x^4 + 20x^3 - 15x^2)$$
: $(5x) = 2x^3 + 4x^2 - 3x$

d)
$$(30x^6 - 25x^5 - 20x^4 + 5x^3)$$
; $(5x^3) = 6x^3 - 5x^2 - 4x + 1$

e)
$$(-36x^{12} + 24x^8 - 48x^4): (-12x^4) = 3x^8 - 2x^4 + 4$$

f)
$$(x^4 + 6x^3 - 7x^2)$$
: $(3x) = \frac{1}{3}x^3 + 2x^2 - \frac{7}{3}x$

6. IDENTIDADES NOTABLES Y FACTOR COMÚN

6.1 Desarrolla utilizando las identidades notables.

a)
$$(10x^8 - 2)^2$$

d)
$$\left(\frac{3}{4}X^4 + 8X^2\right)^2$$

b)
$$(6x^3 + 5x^2)^2$$

e)
$$\left(x + \frac{1}{10}x^{10}\right)\left(x - \frac{1}{10}x^{10}\right)$$

c)
$$(4x^7 + x^4)(4x^7 - x^4)$$

f)
$$\left(\frac{2}{3}x^5 - \frac{3}{2}x^7\right)^2$$

a)
$$(10X^8 - 2)^2 = 100X^{16} - 40X^8 + 4$$

d)
$$\left(\frac{3}{4}x^4 + 8x^2\right)^2 = \frac{9}{16}x^8 + 12x^6 + 64x^4$$

b)
$$(6x^3 + 5x^2)^2 = 36x^6 + 60x^5 + 25x^4$$

e)
$$\left(X + \frac{1}{10}X^{10}\right) \left(X - \frac{1}{10}X^{10}\right) = X^2 - \frac{1}{100}X^{20}$$

c)
$$(4x^7 + x^4)(4x^7 - x^4) = 16x^{14} - x^8$$

f)
$$\left(\frac{2}{3}X^5 - \frac{3}{2}X^7\right)^2 = \frac{4}{9}X^{10} - 2X^{12} + \frac{9}{4}X^{14}$$

6.2 Simplifica las siguientes expresiones utilizando las identidades notables y operando.

a)
$$(3x^2+4)^2-(4x^2+3)^2$$

c)
$$(x+1)^2 + (x+1)(x-1) - 2(x-1)^2$$

b)
$$(3x^4 - 5x)^2 - (5x - 3x^4)^2$$

d)
$$x(4x-6)-(2x+3)^2-9$$

a)
$$9x^4 + 24x^2 + 16 - (16x^4 + 24x^2 + 9) = -7x^4 + 7$$

b)
$$9x^8 - 30x^5 + 25x^2 - (25x^2 - 30x^5 + 9x^8) = 0$$

c)
$$x^2 + 2x + 1 + x^2 - 1 - 2(x^2 - 2x + 1) = 6x - 2$$

d)
$$4x^2 - 6x - (4x^2 + 12x + 9) - 9 = -18x - 18$$

6.3 Escribe en forma de potencia los siguientes polinomios utilizando las identidades notables.

a)
$$16x^2 + 8x + 1$$

a)
$$16X^2 + 8X + 1 = (4X + 1)^2$$

b)
$$36x^8 - 49x^4$$

b)
$$36x^8 - 49x^4 = (6x^4 + 7x^2)(6x^4 - 7x^2)$$

c)
$$100a^6 + 9a^4 - 60a^5$$

c)
$$100a^6 + 9a^4 - 60a^5 = (10a^3 - 3a^2)^2$$

d)
$$49x^8 - 81x^2$$

d)
$$49x^8 - 81x^2 = (7x^4 + 9x)(7x^4 - 9x)$$

46220 - Picassent (València) Tel. 96 122 12 00 www.santcristoformartir.com scmi@planalfa.es

6.4 Saca factor común

a)
$$8x^3 - 16x^2 + 40x - 80$$

b)
$$3x^5 - 6x^4 + 4x^3 - 7x^2$$

a)
$$8x^3 - 16x^2 + 40x - 80 = 8(x^3 - 2x^2 + 5x - 10)$$
 c) $25x^9 - 30x^8 + 5x^3 = 5x^3(5x^8 - 6x^3 + 1)$

a)
$$8x^3 - 16x^2 + 40x - 80 = 8(x^3 - 2x^2 + 5x - 10)$$

c)
$$25x^9 - 30x^6 + 5x^3$$

d)
$$\frac{3}{7}x^2 - \frac{6}{7}x + \frac{9}{7}$$

c)
$$25x^9 - 30x^6 + 5x^3 = 5x^3 (5x^6 - 6x^3 + 1)$$

b)
$$3x^5 - 6x^4 + 4x^3 - 7x^2 = x^2(3x^3 - 6x^2 + 4x - 7)$$
 d) $\frac{3}{7}x^2 - \frac{6}{7}x + \frac{9}{7} = \frac{3}{7}(x^2 - 2x + 3)$

6.5 En cada una de estas operaciones se ha cometido al menos un error. ¿Sabrías decir cuáles? Corrígelas:

a)
$$(3x^2 + 6x^5)^2 = 6x^4 + 36x^{10} + 36x^7$$

b)
$$(8+6)^2 = 64+36$$

c)
$$(5x^3 + 7x^9)(5x^3 - 7x^9) = 49x^{18} - 25x^6$$

d)
$$30x^9 - 6x^8 + 12x^7 + 3x^6 = 3x^6(10x^3 - 2x^2 + 4x)$$

e)
$$(3x+6)^2 = 3(x+2)^2 = 3(x^2+4x+4)$$

a)
$$(3x^2 + 6x^6)^2 = 9x^4 + 36x^{10} + 36x^7$$

b)
$$(8+6)^2 = 64+36+2\cdot 8\cdot 6$$

c)
$$(5x^3 + 7x^9)(5x^3 - 7x^9) = 25x^6 - 49x^{18}$$

d)
$$30x^9 - 6x^8 + 12x^7 + 3x^6 = 3x^6(10x^3 - 2x^2 + 4x + 1)$$

e)
$$(3x+6)^2 = 3^2(x+2)^2 = 9(x^2+4x+4)$$